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An arbitrary source function cannot be determined fully from projection data that are limited in number and range 
of viewing angle. There exists a null subspace in the Hilbert space of possible source functions about which the 
available projection measurements provide no information. The null-space components of deterministic solutions 
are usually zero, giving rise to unavoidable artifacts. It is demonstrated that these artifacts may be reduced by a 
Bayesian maximum a posteriori (MAP) reconstruction method that permits the use of significant a priori informa- 
tion. Since normal distributions are assumed for the a priori and measurement-error probability densities, the 
MAP reconstruction method presented here is equivalent to the minimum-variance linear estimator with nonsta- 
tionary mean and covariance ensemble characterizations. A more comprehensive Bayesian approach is suggested 
in which the ensemble mean and covariance specifications are adjusted on the basis of the measurements. 

INTRODUCTION 
The problem of obtaining an artifact-free computed-tomo- 
graphic (CT) reconstruction from projection data that are 
limited in number and possibly in angular coverage is, in 
general, a difficult one to solve. This difficulty arises from 
a fundamental limitation inherent in incomplete data sets. It 
is seen that this limitation may be viewed as arising from an 
essential lack of information about the unknown source 
function, that is, its null-space components.l The Bayesian 
approach allows one to incorporate a priori information about 
the source function based on the properties of the ensemble 
of source functions realizable in the specified imaging situa- 
tion. If the a priori information is specific enough, reasonable 
estimates of the null-space components of the source function 
can be obtained, thereby reducing the artifacts in the recon- 
struction. The results of this maximum a posteriori (MAP) 
method2 are compared with the fit and iterative reconstruc- 
tion (FAIR) technique.3 We propose in the discussion that 
the incorporation of the Bayesian approach in the FAIR 
technique can provide a more-flexible algorithm. 

of Eq. (i) allows it to represent closely actual physical mea- 
surements since it can take into account response functions 
that vary with position. Note that Eq. (1) is applicable to any 
discretely sampled, linear-imaging system. Thus the concept 
of null space and the Bayesian methods proposed for over- 
coming its limitations are relevant to a large variety of 
image-restoration problems. 

MEASUREMENT SPACE-NULL SPACE 

The unknown function f(x, y) is usually restricted to a 
certain class, for example, the class of all integrable functions 
with compact support. Consider the Hilbert space of all ac- 
ceptable functions and assume that all the hi belong to that 
space. Equation (1) is an inner product of hi with f. Thus 
the measurements g; may be thought of as a projection of the 
unknown vector f onto the response vector hi. Only those 
components off that lie in the subspace spanned by the set 
of all hi contribute to the measurements. We call this sub- 
space the measurement space. The components off in the 
remaining orthogonal subspace, the null space, do not con- 
tribute to the measurements. Hence the null-space contri- 
bution to f cannot be determined from the measurements 
alone. Since the deterministic (measurement) subspace of 
f is spanned by the response functions, it is natural to expand 
the estimate off in terms of them: 

The CT problem may be stated as follows: Given a finite set 
of projections of a function of two dimensions f(x, y) with 
compact support, obtain the best estimate of that function. 
The projections may generally be written as a weighted two- 
dimensional (2-D) integral of f(x, y), 

t’(x, y) = fl aihib, y). 

gi = II- bib, y)f(x, y)dxdy, (1) 

where the hi are the weighting functions and i = 1,2,. . . N for 
N individual measurements. We refer to the hi as response 
functions. In the CT problem the hi typically have large 
values within a narrow strip and small or zero values outside 
the strip. If the hi are unity within a strip and zero outside, ( 
Eq. (1) becomes a strip integral. For zero strip width, it be- 
comes a line integral. These last two cases are recognized as 
idealizations of the usual physical situation. The generality 

Thus the null-space components off are zero, which is a nec- 
essary condition for the minimum-norm solution. This leads 
to artifacts in f because it does not possess those components 
off that lie in the null space. Further reading on the null- 
space-measurement-space concept may be found in papers 
by Twomey.4-6 

The response-function expansion [Eq. (2)] is formally 
identical to the familiar backprojection process in which the 
value ai is added to the image along the strip function hi. 
Thus the backprojection process affects only the measure- 
ment-space components of the reconstruction. Most of the 
well-known CT reconstruction algorithms incorporate 
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backprojection, including filtered backprojection, the alge- 
braic reconstruction technique (ART),s the simultaneous it- 
erative construction technique (SIRT),g SIRT-like algorithms 
(least-squareslo and other variant+), and the natural pixel 
matrix formulation by Buonocore et al. 12p13 Such algorithms 
can alter only the measurement-space part of the initial esti- 
mate. When the initial estimate lies solely in the measure- 
ment space, as is normally the case, so will the final esti- 
mate. 

Various augmentations to deterministic algorithms, such 
as consistency, analytic continuation, and global constraints 
(including maximum entropy), have been considered by 
Hanson.1 These seem to be ineffective in overcoming the 
measurement-space restrictions presented above for the so- 
lution of the general problem. Other authors have mentioned 
in passing the concept of the measurement-space-null-space 
dichotomy14J5 but have not explicitly considered its effect on 
reconstructions from limited-projection data. As an aside, 
the range of the transpose of the projection-measurement 
matrix A, referred to in Ref. 15, is the measurement space in 
the square pixel representation. Smith et al.16 considered 
the null space of a finite number of projections to explore the 
convergence rate of the ART algorithm. This work was ex- 
tended by Hamaker and Solmon.17 Katz made extensive use 
of the null-space concept to determine the conditions for 
uniqueness of a reconstruction.is Louislg developed an ex- 
plicit expression for functions belonging to the null space 
corresponding to a finite set of projection data and showed 
that ghosts from the null space can appear as lesions. Medoff 
et aZ.20 recognized the consequences of the null space associ- 
ated with limited data and introduced a method to eliminate 
null-space ghosts through the application of known con- 
straints on the reconstructed image. Further references on 
the limited-angle CT problem may be found in Ref. 1. 

The restriction of deterministic solutions to the measure- 
ment space should not be viewed as a negative conclusion. 
Rather, it is simply a statement of what is possible for a given 
set of measurements in the absence of further information. 
It allows one to state formally the goal in an improved lim- 
ited-angle CT reconstruction as that of estimating the null- 
space contribution through the use of further information 
about the function to be reconstructed. 

BAYESIAN SOLUTION 

The Bayesian approach to CT reconstruction21 is based on the 
assumption that the image to be reconstructed belongs to an 
identifiable ensemble of similar images. In the following 
discussion, the image f and the set of all projections g are 
considered to be vectors. The best estimate for the recon- 
struction is taken to be that particular image f that maximizes 
the a posteriori conditional probability density off given the 
measurements g. This probability is given by Bayes’s law, ’ 

Htld = W lfP(f), 
P(g) (3) 

in terms of the conditional probability of g given f and the a 
priori probability distributions off and g separately. We 
assume that the measurement noise is additive with a prob- 
ability distribution that has zero mean and is Gaussian dis- 
tributed. P(f) is assumed to be a Gaussian distribution with 
a mean value 7. The covariance matrices of the noise and the 

ensemble image vectors are Ri and Rf, respectively. Under 
these assumptions, the MAP solution is easily shown to sat- 
isfy22 

Rf-l(f - f) + HTR,-l(g - Hf) = 0, (4) 

where H is the linear operator (matrix) corresponding to the 
projection process described by the integral in Eq. (1). The 
transpose of H is the familiar backprojection operation. It 
can be seen from Eq. (4) that the desired solution strikes a 
balance between its difference with the ensemble mean 7 and 
the solution to the measurement equation (g = Hf). This 
balance is determined by the covariance matrices Rf and R, 
that specify the confidence with which each difference is 
weighted as well as possible correlations between the differ- 
ences. 

We have adopted an iterative approach to the solution of 
Eq. (4) based on the scheme proposed by Herman and Lent.21 
The nth estimate off n is given by the iteration scheme: 

f” =f, (54 

ffl+l = f” + cnrn, (5b) 

rn = 7 -f” + RfHTR,-l(g - Hfn), (5c) 

rnTsn en=-, 
snTsn Cd) 

sn = (I + RfHTR,-lH)rn, (54 

where vector rn is the residual of Eq. (4) (multiplied by Rf) 
and the scalar cn is chosen to minimize the norm of rn+l. 
This iterative scheme is similar to the one proposed by Hunts2 
for nonlinear MAP-image restoration. We have found that 
this technique works well, although convergence typically 
requires lo-20 iterations. 

It is easy to see from the form of this iterative procedure 
that significant null-space contributions to f can arise from 
the a priori information. First, the zero-order estimate is 7, 
which can contain null-space contributions. Second, in Eq. 
(5c), Rf can generate null-space contributions when it operates 
on the results of the backprojection (HT) process, which lies 
wholly in the measurement space. Rf, in effect, weights the 
backprojection of the measurement residuals. If Rf is chosen 
as zero in certain regions of the reconstruction, these regions 
will not be changed throughout the iteration scheme. It must 
be emphasized that the choices for 7 and Rf are exceedingly 
important since it is only through them that a nonzero null- 
space contribution to the reconstruction arises. As was stated 
earlier, this is the major advantage of the Bayesian approach 
over deterministic algorithms. Trivial choices, such as using 
for f a constant or a filtered backprojection reconstruction 
based on the same projections or assuming Rf to be propor- 
tional to the identity matrix,2sf2s are not helpful for reducing 
artifacts. 

The iteration scheme given by Eqs. (5) is SIRT-likei in that 
the reconstruction update [Eq. (5b)] is accomplished only after 
all the ray sums (Hf”) have been calculated. It is known that 
ART-like algorithms converge much faster than SIRT-like 
ones.ll Herman et a1.23 have proposed an ART-like recon- 
struction algorithm that converges to the solution of the MAP 
equation [Eq. (4)] under the assumption that Rf and R, are 
proportional to the identity matrix. This algorithm is worth 
exploring as it is likely to converge much more rapidly than 
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the one used here. However, as was stated above, their al- 
gorithm should be extended to include nontrivial choices for 
Rf. The iterative scheme used here, although it may be slower 
than necessary, does provide a solution to the MAP equation, 
which is the important thing. We have found its convergence 
to be such that the norm of the residual [Eq. (5c)] behaves as 
the iteration number raised to the -1.5 to -2.0 power. 

It is well known that the assumption of normal probability 
density distributions leads to a MAP solution [Eq. (4)] that 
is equivalent to the minimum-variance linear estimator.24 
Application of this estimator in a matrix formalism to tomo- 
graphic reconstruction has been pursued by Wood et al. 25,26 
and Buonocore et aZ.27 These authors stressed the impor- 
tance of a priori information in limited-angle reconstruction. 
However, the main thrust of their work was toward improving 
the computational efficiency of the required matrix opera- 
tions, to which end they were successful. 

Tam et al.28 introduced a method to use the a priori known 
region of support of the source distribution. This method is 
the 2-D counterpart of the celebrated Gerchberg-Papoulis 
algorithm for obtaining superresolution. It is an iterative 
technique in which the known properties of the image in the 
spatial and the Fourier domains are alternately invoked. The 
objective is to use the known spatial extent of source image 
to extend its 2-D Fourier transform from the known sector 
into the missing sector. Although this method has been 
studied extensively2e-s2 and has been shown to have some 
merit when either the region of support is restrictive or the 
angular region of the missing projections is fairly narrow, the 
region-of-support constraint may be incorporated more di- 
rectly into many reconstruction algorithms. In virtually every 
iterative algorithm it is possible to invoke constraints on the 
reconstructed function. Thus it is possible to require the 
function to be zero outside the region of support at each 
update step, for example, in computing Eq. (5b) in the present 
MAP algorithm. Such an iterative algorithm will yield a so- 
lution that satisfies the region-of-support constraint, and 
Tam’s procedure is not required. One may enforce this con- 
straint through a redefinition of the response functions hi in 
Eq. (1) to make them zero outside the region of support. 
Then the backprojection operation [Eq. (2)] affects only the 
reconstruction within the region of support. With this 
redefinition of h;, the measurement space includes only 
functions that fulfill the region-of-support constraint. From 
this standpoint, Tam’s iterative procedure does not affect the 
null space associated with the available measurements. The 
natural pixel formulation of Buonocore et al. 12,13 may be re- 
vised in a similar manner, but that would probably ruin the 
properties of the measurement matrix that he exploited to 
provide efficient matrix calculations. 

FIT AND ITERATIVE RECONSTRUCTION 

The preceding MAP solution is compared in the section on 
Results, below, with an alternative method to incorporate a 
priori information in the reconstruction process, namely, the 
FAIR technique introduced by Hanson.3 In this algorithm 
the a priori information about the source function is used to 
construct a parameterized model of the unknown function. 
As the first step in this algorithm, the parameters in the model 
are determined from the available projection data by a 
least-squares (or minimum chi-squared) fitting procedure. 

In the second step of FAIR an iterative reconstruction pro- 
cedure is performed using the fitted parametric model as the 
initial estimate. Although, in the past, the ART algorithm8 
was used in the second iterative step of FAIR, other iterative 
algorithms, such as the MAP algorithm above, can be used 
advantageously (see the Discussion section below). The it- 
erative reconstruction procedure forces the result to agree with 
the measurements through alteration of its measurement- 
space contribution. The null-space contribution to the FAIR 
reconstruction arises solely from the parametric model fitted 
in the first step and hence from the a priori information used 
in specifying the model. 

RESULTS 

The results of application of various reconstruction methods 
to a specific 2-D, limited-angle reconstruction problem are 
compared. Algorithms that are useful for handling incom- 
plete data through the use of a priori information must pos- 
sess the following important characteristics: (1) significantly 
reduce artifacts that arise from inappropriate null-space 
contributions, (2) gracefully respond to inconsistencies be- 
tween the actual source function and the assumptions about 
it, and (3) tolerate noise in the projection data. We demon- 
strate that the MAP and the FAIR algorithms conform to 
these requirements. 

The relevant reconstruction techniques have been applied 
to an example source function consisting of a fuzzy annulus 
with variable amplitude [Fig. l(a)], which roughly emulates 
the nuclear-isotope distribution in the cross section of a heart. 
The peak value of the distribution is 1.24. The available 
projection data consist of 11 views covering 90” in projection 
angle. At first no noise was added to the projections. Each 
projection contained 128 samples. All reconstructions contain 
128 X 128 pixels. The measurement-space reconstruction 
obtained using ART8 [Fig. l(b)] shows severe artifacts that 
tend to obscure much of the source distribution. 

Figure l(c) shows the reconstruction obtained by using the 
maximum entropy algorithm (MENT) provided to us by 
Minerbo.3s This algorithm provides a modest improvement 
over ART, particularly in regard to the detection of the dip 
in the annulus at 50”. However, MENT does not have much 
effect on the splaying of the reconstruction along the central 
axis of the available views. In our experience the principal 
advantage of the maximum-entropy constraint is its implicit 
constraint of nonnegativity. ART reconstructions that are 
constrained to be nonnegative are similar to the MENT re- 
sults. The nonnegativity constraint amounts to the incor- 
poration of a priori knowledge about the source function. 
This constraint is generally applicable and is effective in the 
reconstruction of certain types of source distributions, such 
as pointlike objects on a zero background. However, there 
are many source distributions and data-collection geometries 
for which nonnegativity provides little benefit, such as the 
present test case. We do not apply the nonnegativity con- 
straint to any other reconstructions here, simply to avoid 
confusion about its role in providing improvement in the re- 
constructions as opposed to the role of the use of other a priori 
knowledge. 

It was assumed that the a priori information consisted of 
the knowledge that the source function had an annular 
structure with known position, radius, and width. Thus, in 
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the MAP approach, f was chosen to be an annulus with con- 
stant amplitude and with Gaussian cross section. The mean 
radius and width of the annulus were chosen to be the same 
as the unknown source function. The covariance matrix Rf 
was assumed to be diagonal and was hence an image propor- 
tional to the ensemble variance about the mean 7. The co- 
variance image Rf was large (1.0) at the peak of the annulus 
and small (0.2) inside and outside [Fig. 2(a)]. Since noiseless’ 
projections were used, the measurement noise was assumed 
to be uncorrelated, constant, and low in value. The resulting 
MAP reconstruction [Fig. 2(b)] is vastly superior to the ART 
and MENT results, eliminating essentially all the artifacts 
present in these deterministic solutions. The parametric 
model chosen for the FAIR method consisted of 18 2-D 

Fig. 1. (a) Source distribution used for the first example. (b) ART 
reconstruction and (c) MENT reconstruction obtained using 11 views 
covering 90” in projection angle. Unconstrained ART was used, 
whereas MENT has an implicit nonnegativity constraint. 

Gaussian functions evenly distributed on a circle. The radius 
of the circle and the width of the Gaussians were chosen to be 
the same as those of the source function. The fitting proce- 
dure determined the amplitudes of each of the Gaussian 
functions. The resulting fitted function was used as the initial 
estimate in ART to obtain the final result [Fig. 2(c)]. This 
FAIR reconstruction is comparable with the MAP result. 

For a quantitative comparison, Fig. 3 shows the maximum 
reconstruction value obtained along radii as a function of angle 
for the various reconstruction methods presented in Figs. 1 
and 2. The FAIR method is seen to follow the original source 
dependence most closely, with the MAP result a close second. 
The ART reconstruction has many quantitatively serious 
defects. The computation times on a CDC 7600 computer for 
the algorithms presented here are ART (10 iterations), 17 set; 
MAP (10 iterations), 73 set; FAIR (3 iterations), 25 set; 
MENT (6 iterations), 105 sec. The corresponding execution 
time for filtered backprojection is 5 sec. 

A slightly different source function, Fig. 4(a), was used to 
test the ability of the algorithms to deal with inconsistencies 
between assumptions about the source function and its actual 
distribution, This source function is the same as Fig. l(a) 
with a narrow, 0.6~amplitude, 2-D Gaussian added outside the 
annulus at 330” and a broad, O.l-amplitude Gaussian added 
underneath the annulus at 162”. The reconstructions ob- 
tained using the same assumptions as above are shown in Figs. 



K. M. Hanson and G. W. Wecksung 

(a) 

(b) 

4(b)-4(d). Both MAP and FAIR handle the inconsistencies 
similarly. The angular dependence of the maximum recon- 
struction value, Fig. 5, shows that both algorithms produce 
an excess near 330’ since they have tried to shift the discre- 
pant exterior source to the annulus, which is consistent with 
the a priori assumptions. However, both methods do have 
a significant response in the region of the exterior source and 
therefore provide some information about the discrepancy. 
This would not be the case for the MAP algorithm were Rf 
chosen to be zero outside the annulus. This points out the 
need to be conservative in placing restrictions on the recon- 
struction that may be violated by the actual source distribu- 
tion. The second iterative reconstruction step in the FAIR 
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(c) 
Fig. 2. Reconstructions using the a priori information that the un- 
known source function is a fuzzy annulus with known radius and 
width. (b) MAP reconstruction was obtained using a flat annulus 
for f and the variance image (a) as the diagonal entries of RI (nondi- 
agonal entries assumed to be zero). (c) The FAIR result was based 
on a model of the image consisting of 18 Gaussian functions distrib- 
uted around the circle. The use of a priori knowledge significantly 
reduces the artifacts present in the deterministic reconstructioning 
in Fig. 1. 
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90 180 270 360 
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THETA (deg) 
Fig. 3. The angular dependence of the maximum values along var- 
ious radii for the ART, MAP, and FAIR reconstructions in Figs. 1 and 
2 compared with that for the original function, Fig. l(a), quantitatively 
demonstrates the improvement afforded by MAP and FAIR. method is needed for this same reason as it allows correction 
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(b) 

Id) 
Fig. 4. Reconstructions of (a) source distribution that does not conform to the annular assumption obtained from 11 views subtending 90’ 
using (b) ART, (c) MAP, and (d) FAIR algorithms. Both MAP and FAIR tend to move the added source outside the annulus onto the annulus. 
However, they provide indications in the reconstructions that there is some exterior activity. 

to be made to the fitted model, if indicated by the available 
projections. 

The final example is the reconstruction of Fig. l(a) from 
noisy data. The same 11 projections were used as before but 
with random noise added with arms deviation of 10% relative 
to the maximum projection value. The reconstructions in Fig. 
6 demonstrate that both MAP and FAIR simply yield noisy 
versions of those obtained from noiseless projections. There 
is no disastrous degradation, as would be expected for algo- 

rithms based on analytic continuation.34l35 Although the 
FAIR result appears to be much noisier than the MAP re- 

,construction, they both possess nearly identical noise in the 
annular region. The rms difference between the projection 
measurements and the ray sums of the MAP and the FAIR 
reconstructions, respectively, are roughly 0.8 and 0.5 times the 
actual rms deviation of the noise in the projections. This 
indicates that both algorithms have attempted to solve the 
measurement equations beyond what is reasonable. The 
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Fig. 5. Angular dependence of the maximum values in the MAP and 
the FAIR reconstructions of Fig. 4. 

MAP algorithm does balance the rms error in the projections 
against the deviation from f. However, ART simply attempts 
to reduce the rms projection error to zero. 

DISCUSSION 

In past comparisons of MAP results to more-standard tech- 
niques in the areas of CTz1123 and image restoration,36-38 the 
MAP approaches yielded little or no benefits. The reasons 
for the success of the MAP approach in the above limited- 
angle CT problem are: (1) The solution is severely under- 
determined because of the limited data set. (2) The a priori 

(b) 

(a) 

Fig. 6. Reconstructions of the source in Fig. l(a) from 11 noisy projections using (a) ART, (b) MAP, and (c) FAIR algorithms show that the 
latter two algorithms are tolerant of noise. 
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Fig. 7. Reconstruction from the same data as used in Fig. 6 obtained 
by employing MAP as the second step in the FAIR procedure. This 
global Bayesian approach yields the best estimate of the original 
function and provides flexibility in the use of a priori information. 

assumptions about 7 and Rf can be made quite restrictive. It 
is expected that the MAP analysis will be most useful in sit- 
uations in which these two conditions hold. 

The incorporation of a priori knowledge in the MAP algo- 
rithm presented above is quite restricted. It does not readily 
accommodate source distributions that vary in size, shape, or 
location. However, the fitting procedure used in the first step 
of FAIR can easily handle such variations by including them 
as variables to be determined from the data. In the spirit of 
the Bayesian approach, constraints on these variables may be 
introduced to guide the fitting procedure toward a reasonable 
result. The use of ART in the second iterative portion of 
FAIR has the disadvantage that ART tries to reduce the dis- 
crepancy in the measurement equations to zero without regard 
for the estimated uncertainties in the data. Thus the FAIR 
result shown in Fig. 6(c) is quite noisy and is substantially 
further from the actual source distribution (rms deviation = 
0.154) than the intermediate fitted result (rms deviation = 
0.031). 

In a more-global Bayesian approach to the problem, the 
fitting procedure in FAIR may be used to estimate 7 and Rf 
for input to a MAP algorithm. The fitting procedure may be 
viewed as defining a subensemble appropriate to the available 
data. For the present example, the fitted result was used for 
7, and Rf was assumed to be 0.1 times the identity matrix. Rf 
is assumed to be much smaller than that used in the preceding 
MAP calculation to reflect the supposition that the fit is much 
closer to the desired result than is the annulus of constant 
amplitude used for f previously. The resulting MAP recon- 
struction, using the lO%-rms noise data, shown in Fig. 7 is 
better than any of the results shown in Fig. 6. The rms de- 
viation of this reconstruction relative to the source function 
is 0.035, whereas that for the earlier MAP result, Fig. 6, is 
0.060. When this FAIR-MAP method is applied to the pro- 
jections of the inconsistent source function shown in Fig. 4(a), 

the result is similar to that obtained with FAIR using ART 
[Fig. 4(c)]. These examples demonstrate the power of this 
global Bayesian approach in which the MAP algorithm is used 
for the second, iterative step of FAIR. 
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